This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Aspects of Organoselenium Chemistry

Richard S. Glass

To cite this Article Glass, Richard S.(1998) 'Aspects of Organoselenium Chemistry', Phosphorus, Sulfur, and Silicon and the Related Elements, 136: 1, 159 - 174

To link to this Article: DOI: 10.1080/10426509808545941 URL: http://dx.doi.org/10.1080/10426509808545941

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Downloaded At: 16:21 28 January 2011

ASPECTS OF ORGANOSELENIUM CHEMISTRY

RICHARD S. GLASS
Department of Chemistry, The University of Arizona, Tucson, AZ
85721, U.S.A.

Monoselenophosphate, SePO₃H_{3-n}, has been chemically synthesized and characterized. It has been shown to be identical with the biological selenium donor SePX. Hydrolysis of selenophosphate is pH dependent and maximal at about pH 7. The dianion is the species which hydrolyzes fastest. The hydrolysis occurs via a dissociative monomeric metaphosphate-like transition state. Alcohols and amines are phosphorylated by monoselenophosphate. The sensitivity of detection of both ⁷⁷Se and ¹²⁵Te by NMR spectroscopy has been greatly increased by inverse proton detection using multiple-quantum ¹H-{⁷⁷Se} and ¹H-{¹²⁵Te} correlation spectroscopy. One- and two-dimensional HMQC spectra have been obtained for a variety of organoselenium and tellurium compounds. The signal enhancement obtained by such methods are comparable to the theoretical values.

Key words: monoselenophosphate, indirect ⁷⁷Se, ^{123,125}Te NMR

INTRODUCTION

The labile selenium do for compound SePX is required for the synthesis of selenium-dependent enzymes and seleno-tRNAs. It is formed from ATP and HSe by the *selD* enzyme. [1-3] The structure of SePX has unequivocally been demonstrated to be monoselenophosphate,

SePO₃H_{3-n}ⁿ, by comparison with the chemically synthesized and characterized material. A number of enzymes have selenocysteine, Sec, residues and in some cases at their active sites. The specific incorporation of Sec in the ribosome is directed by the UGA codon. The selenocysteyl-tRNA^{Sec} which responds to this codon is biosynthesized by selenium donation from SePO₃H_{3-n} to the 2,3-aminoacryl-tRNA^{Sec} formed by dehydration of seryl-tRNA^{Sec}. [7,8]

Hydrolysis of phosphate monoesters has been extensively studied^[9-13] and has been described in terms of a monomeric metaphosphate-like transition state. However, all of the kinetic data fits a preassociation mechanism.^[13-15] Hydrolysis of μ-monothiopyrophosphate also occurs by a dissociative transition state in which there is no nucleophilic participation to generate monomeric metaphosphate^[16,17] which cannot escape its solvation sphere. Hydrolysis of SePO₃H_{3-n}ⁿ- appears to be mechanistically related to these previously studied systems.^[18]

⁷⁷Se NMR spectroscopy provides a powerful method for structural studies of organoselenium compounds and selenoproteins. Selenium-77 has spin $I = \frac{1}{2}$ and a chemical shift range of over 3000 ppm^[19-21] rendering it an advantageous structural probe. Nevertheless the low magnetogyric ratio of ⁷⁷Se and its relatively low natural isotopic abundance of 7.58% render its measurement in proteins difficult. Direct NMR detection of ⁷⁷Se in the catalytically active form of isotopically enriched glutathione peroxidase was not possible because of its limited solubility. ^[22] Consequently, the use of inverse detection of ⁷⁷Se was developed. ^[23] Inverse detection has been applied to detecting a number

of insensitive nuclei. ^[24] In this method applied to selenium the detection of ⁷⁷Se is enhanced by taking advantage of the high magnetogyric ratio and high natural isotopic abundance of ¹H. The method requires that the ¹H and ⁷⁷Se nuclei be scalar coupled. The theoretical enhancement for such inverse detection is given by $N(\gamma_{1_H}/\gamma_{77_{Se}})^{3/2}$ where N is the number of ¹H nuclei, and γ is the magnetogyric ratio for the subscripted nucleus. ^[25] The technique used for inverse detection of ⁷⁷Se was multiple-quantum ¹H-{⁷⁷Se} correlation spectroscopy. This method has also been applied for the detection of tellurium. ^[26] Tellurium has two magnetic nuclei: Te-123 and Te-125, both with spin I = ½. Since the natural isotopic abundance of ¹²⁵Te is greater than that for ¹²³Te, 7.14% versus 0.9%, most work focused on ¹²⁵Te. Although the magnetogyric ratio of ¹²⁵Te is greater than that for ⁷⁷Se, substantial enhancement of ¹²⁵Te is still expected by inverse ¹H detection. An attractive feature of ⁷²⁵Te NMR spectroscopy is its especially large chemical shift range of 7000ppm. ^[19]

RESULTS AND DISCUSSION

Chemical Synthesis of SePO₃H_{3,n} and Identity with SePX

Monoselenophosphate can be synthesized conveniently as shown in Eq.(1)-(4). O,O,O-Trimethylselenophosphate 1 was prepared as previously reported.^[27] Treatment of this compound with trimethylsilyl iodide gave 2 in quantitative yield. This material was identical with that reported previously.^[28] An aqueous solution of SePO₃H_{3-n} can be prepared by hydrolysis of 2 but this is inconvenient because of the water-insolubility of this material. Consequently a more convenient procedure

$$(MeO)_3P + Se \longrightarrow (MeO)_3PSe$$
 (1)

$$(MeO)_{3}P + Se \longrightarrow (MeO)_{3}PSe$$

$$1$$

$$MeO)_{3}PSe + TMSI \longrightarrow (TMSO)_{3}PSe$$

$$2$$

$$(1)$$

$$(TMSO)_{3}PSe + i-PrOH + i-Pr_{2}NEt \longrightarrow (i-Pr_{2}NHEt)^{+}[(TMSO)_{2}POSe]^{-}$$
3
(3)

$$3 + H_2O \longrightarrow SePO_3H_{3-n}^{n-}$$
 (4)

was developed. [4,29] Selective cleavage of one trimethylsilyl group was achieved by adding a controlled amount of i-PrOH and i-Pr2NEt to 2 in CH₂Cl₂ On cooling the solution and adding hexanes, 3 precipitated as a colorless solid. This material can be recrystallized to provide analytically pure salt which can be conveniently stored. Its structure was established by ¹H, ¹³C, and ³¹P NMR spectroscopic analysis and elemental analysis. Furthermore, selective alkylation at selenium with MeOTf provided the known^[28] MeSeP(O)(OTMS)₂ identical with the previously reported material. The water-soluble salt 3 can be conveniently hydrolyzed. Owing to the facile oxidation of SePO₃H_{3-n}-, it is essential that its preparation is carried out under rigorously anaerobic conditions. Aqueous solutions of SePO₃H_{3-n} were characterized by ³¹P NMR spectroscopy and the insoluble Ba₃(SePO₃)₂ salt obtained by addition of barium chloride to an aqueous alkaline solution. The ³¹P NMR spectrum of SePO₃H_{3-n}^{-*} showed a strong dependence of the ³¹P chemical shift on pH. The chemical shift varies by almost 20 ppm over the pH range of 1-12. Similar dependence of the ³¹P chemical shift on pH has been previously reported for H₃PO₄, [30,31] condensed phosphates, [31] adenine nucleotides, [32,33] and thiamine diphosphate. [34] This sensitivity of chemical shift to ionization

state of SePO₃H_{3-n}- permits facile determination of pK₂ and pK₃ for H₃PO₃Se. From the inflection points in the plot of ³¹P chemical shift versus pH, the pK₂s of SePO₃H_{3-n}- acid may be estimated. The pK' for ADP and ATP were determined in a similar way using NMR spectroscopic data. ^[35] Shown in Table I are pK₂ and pK₃ corresponding

TABLE I pK₂s of H₃PO₃X

pK ₂	pK ₃
7.2ª	12.34
5.6, ^b 5.40, ^c 5.4 ^d	10.3, ^b 10.14, ^c 10.2 ^d
4.6	8.8
	7.2 ^a 5.6, ^b 5.40, ^c 5.4 ^d

to Eq. (5) and (6), respectively, determined in this way for H₃PO₃Se and

$$H_2PO_3X \Longrightarrow H^+ + HPO_3X^{2-}$$
 (5)

$$HPO_3X^{2-} \implies H^+ + PO_3X^{3-}$$
 (6)

the corresponding pK₂s reported for H₃PO₄ and H₃PO₃S. As expected the relative acidities of the corresponding acids follows the order Se>S>O.

Monoselenophosphate, prepared and characterized chemically, was compared with the prokaryotic biological selenium donor SePX.^[4] The ³¹P chemical shift and ³¹P-⁷⁷Se coupling constant for each of the two species were identical under the same conditions. In addition, ⁷⁵Seradiolabeled SePX was prepared from Na⁷⁵ SeH and ATP using purified selenophosphate synthetase. This material and chemically prepared SePO₃H_{3-n}ⁿ⁻ coeluted on ion-pairing HPLC. Furthermore, addition of

chemically prepared unlabeled SePO₃H_{3-n}ⁿ⁻ to ⁷⁵Se labeled SePX generated *in situ* decreased the amount of ⁷⁵Se incorporated into seleno t-RNAs by a partially purified enzyme in a dose dependent manner. Consequently, the biological intermediate SePX and chemically prepared and characterized SePO₃H_{3-n}ⁿ⁻ are concluded to be the same species.

Hydrolysis of SePO₃H_{3-n}n-

Since SePO₃H_{3.n} is a new chemical species, its chemical behavior, particularly that which may be relevant to its biological activity, is being explored. The first reaction investigated was its hydrolysis.[18] Since the ³¹P NMR signal for SePO₃H_{3-n}- is well-removed from that of H_{3-n}PO₄ⁿ, the hydrolysis of SePO₃H_{3-n} can be conveniently monitored by ³¹P NMR spectroscopy. The rates of hydrolysis at various pHs were determined by measuring the decrease in the ³¹P signal for SePO₃H_{3-n}ⁿ and the corresponding increase in the signal due to H_{3-n}PO₄ⁿ. These rates could be conveniently monitored at 53.7° in NMR tubes containing aqueous buffer solutions of SePO₃H_{3-n}ⁿ- sealed under inert gas. The rates of the reaction depended on the pH of the solution and obeyed first order kinetics. The rates were determined in the pH range of 2-12 and a plot of the dependence of the rate on pH is shown in Fig. 1. A variety of different buffers was used and, where there was overlap between two different buffers, at the same pH, the rates of hydrolysis were the same within experimental error. The pH-rate profile could be fitted analytically and a best least-squares fit of the data gave the following rate constants for each of the ionic states of SePO₃H_{3-n}ⁿ: $k_0 < 10^{-6}$ s⁻¹ (free acid), $k_1 = 0.3$ $\times 10^{-5}$ s⁻¹ (monoanion), $k_2 = 45.1 \times 10^{-5}$ s⁻¹ (dianion) and $k_3 < 10^{-6}$ s⁻¹ (trianion).

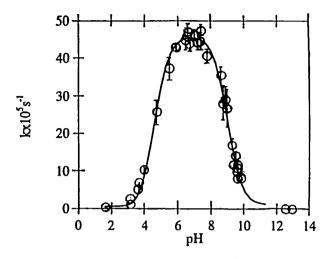


FIGURE 1. Plot of the rate constant versus pH for the hydrolysis of SePO₃H_{3-n}ⁿ⁻

The pK₂s determined kinetically were 4.61 and 9.1 for pK₂ and pK₃, respectively. Although these pK₂s refer to a different temperature than the pK₂s determined by ³¹P NMR spectroscopy as outlined above, they are in reasonable agreement. The activation parameters for the hydrolysis were determined at various pHs. In the alkaline pH range, the values for E₂ were found to be 27.5 ± 1.8 and 31.1 ± 1.3 kcal/mol, ΔH_{298}^{\neq} 26.9± 1.8 and 30.5 ± 1.3 kcal/mol, and ΔS_{298}^{\neq} 7.5± 5.6 and 16.2 ± 4.2 cal/mol deg.

The fortuitous monitoring of the hydrolysis of SePO₃H_{3-n}ⁿ⁻ by ³¹P NMR spectroscopy provided an unexpected result. During the hydrolysis of SePO₃H_{3-n}ⁿ⁻ in Tris, H₂NC(CH₂OH)₃, buffer a small signal appeared in the ³¹P NMR spectrum in addition to those due to the starting material and H_{3-n}PO₄ⁿ⁻. Increasing the concentration of buffer did not significantly change the rate of reaction but resulted in an increase in the unassigned

signal. It was surmised that this signal was due to phosphorylated buffer. Indeed it was proved that Tris was O-phosphorylated in the following way. A triplet was observed for the unassigned ³¹P signal when there was no ¹H decoupling and the chemical shift was identical with authentic Ophosphorylated Tris^[16] prepared by the reaction of Tris with ammonium hydrogen phosphoramidate. [40] Once it had been established that Tris could be O-phosphorylated other alcohols were added to determine if this phosphorylation were general. Indeed ethylene glycol and glycerol were phosphorylated by H_{3.n}PO₄ⁿ in aqueous Hepes, N-(2-hydroxyethyl) piperazine-N-2-ethanesulfonic acid, or Mops, (3-N-morpholino) propane sulfonic acid, buffers. [41] The structures of the phosphorylated products were established by comparison with authentic compounds. In addition to comparison of the ³¹P chemical shifts, the products from phosphorylation of ethylene glycol and glycerol were silylated and analyzed by GC-MS.[42,43] The materials obtained in this way from ethylene glycol and glycerol and SePO₃H_{3-n}ⁿ gave identical GC retention times and MS as those of authentic materials. The results with glycerol are particularly interesting. As shown in Eq. (7) two phosphorylation

products were obtained. These two products were shown to be identical with authentic α - and β -glycerol phosphate as outlined above. In addition, these products were formed in approximately 2:1 ratio of α : β isomers. Since there are two equivalent primary alcohol moieties in

glycerol which on phosphorylation lead to the α-product but only one secondary alcohol group which leads to the β-product, the observed ratio of products is statistical. That is, the rate of phosphorylation of either the primary or secondary alcohol is about the same. This lack of selectivity in the phosphorylation step was generally observed. Thus, the ratios of added alcohol to water are within a factor of 15 or less of the ratio of O-phosphate to H_{3-n}PO₄ⁿ⁻. Amines could be phosphorylated by SePO₃H_{3-n} as well. With 2-aminoethanol both the product of O-phosphorylation and N-phosphorylation were obtained. The amino group in 1,2-diaminoethane and morpholine were also phosphorylated. The products of these phosphorylations were confirmed by comparison with authentic compounds. Again the phosphorylation of amines, like that of alcohols, was relatively unselective.

The proposed mechanism for the hydrolysis of SePO₃H_{3-n}ⁿ was based on the following factors: first order dependence, the positive ΔS_{γ}^{+} the lack of significant rate changes on the addition of alcohols and amines which, nevertheless, were phosphorylated, and the relatively indiscriminant phosphorylation of nucleophiles. From these data it was concluded that this hydrolysis is dissociative in nature involving a monomeric metaphosphate-like transition state. There is no evidence for free monomeric metaphosphate as a reaction intermediate with a finite lifetime but rather a $D_N^*A_N$ mechanism. [44] A further interesting issue is the structure of the species undergoing decomposition. In the hydrolysis of monophosphate esters of phenols in which the pK₂ of the phenol is greater than 5.5, the monoanion is the most reactive species. [9] The monoanion decomposes by first protic isomerization to generate a better

leaving group and better electrofugal moiety as shown in Eq. (8).

$$\begin{array}{ccc}
O & O & O & O \\
ROPOH \longrightarrow & ROPO^{-} & -ROH \longrightarrow & P & P & O' & O^{-}
\end{array}$$
(8)

Similarly, decomposition of the SePO ₃H²-, whose structure is presumed to be 4, occurs fastest of the various ionic species. In analogy with phosphate monoesters, it is proposed to decompose as shown in Eq. (9).

Indirect Detection of Se-77 in NMR Spectroscopy

As pointed out in the introduction SePO₃H_{3-n} serves as the biological donor of selenium in the formation of selenocysteyl t-RNA. This Sec is then incorporated cotranslationally into selenoproteins. Since Sec is often at the active site of such proteins it is of interest to develop ⁷⁷Se NMR spectroscopy which can provide structural information about Sec and its environment.

As pointed out in the Introduction ¹H-{⁷⁷Se} HMQC spectroscopy was used to increase the sensitivity of NMR detection of selenium. Selenophene 5a, Me₂Se, Me₂Se₂, and selenomethionine, whose direct ⁷⁷Se NMR spectra have previously been reported were used to validate the method. Satisfactory one- and two-dimensional ¹H-{⁷⁷Se} heteronuclear multiple quantum coherence (HMQC)^[45,46] spectra were obtained for all of these compounds. Illustrated in Fig. 2 is the spectrum obtained for 5a in the region where the H(2,5) absorption appears. Note

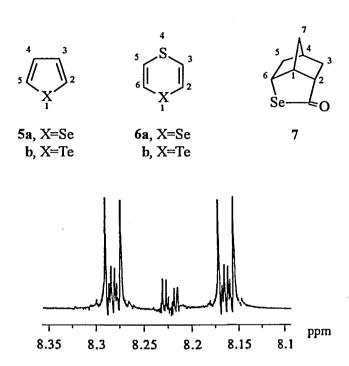


FIGURE 2. 1-D ¹H-{⁷⁷Se}HMQC spectrum of selenophene, 5a

that the absorption at 8.22 ppm, where the main absorption peak would appear in an ordinary ¹H NMR spectrum of this compound is suppressed. This results from the fact that this signal is due to ¹H nuclei that are not coupled to ⁷⁷Se because they are in molecules containing other, non-magnetic selenium isotopes. However, the absorptions at 8.16 and 8.28 ppm, which appear as satellites in an ordinary ¹H NMR spectrum of 5a, are enhanced because they are due to ¹H in molecules of 5a containing the Se-77 isotope and are coupled to ⁷⁷Se. To estimate the experimental enhancement in such NMR experiments, Me₂Se was investigated. The absorption obtained in the inverse ¹H-{⁷⁷Se} HMQC spectrum was compared with that obtained by direct detection. After correcting for the

differences in number of acquisitions, signal-to-noise ratio, and filling factors the experimental enhancement was found to be approximately 68. This compares very favorably with the theoretical enhancement value of 72. Consequently, combining the use of inverse detection with isotopic enrichment an increase of sensitivity in detecting ⁷⁷Se of approximately 800 × is obtained.

This method has also been used to measure the ⁷⁷Se NMR spectroscopic parameters of compounds 6a and 7. Use of 2D ¹H-{⁷⁷Se} HMQC and COSY NMR spectroscopic methods were vital in providing a complete assignment of the ¹H NMR spectrum of 7. ^[47] In particular, H(6) could be unequivocally assigned based on its large two-bond coupling constant with ⁷⁷Se of 29.8 Hz. Furthermore, there are three-bond couplings between H(5exo), H(5endo) and ⁷⁷Se of 3.8 and 10.7 Hz, respectively but not between H(1) and ⁷⁷Se. This lack of a measurable coupling constant between H(1) and ⁷⁷Se is ascribed to the Se-C(6)-C(1)-H(1) dihedral angle of 84°. Finally this method has also been successfully applied to Protein A, a selenoprotein which is part of the *Clostridium sticklandii* glycine reductase complex. ^[48]

Indirect Detection of Te in NMR Spectroscopy

Since inverse detection of ⁷⁷Se proved so advantageous, this method was applied to tellurium. ^[26] Satisfactory one- and two-dimensional ¹H-{¹²⁵Te} HMQC spectra were secured for Me₂Te, *n*-Bu₂Te, Me₂Te₂, PhCH₂TeCN, Me₃TeCl, telluromethionine, **5b**, and **6b**. An illustration of the spectra obtained is given in Fig. 3 for **6b** which shows the region in which H(2,6) resonance occurs. In the ordinary ¹H

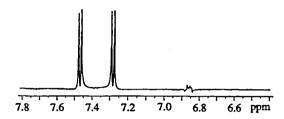


FIGURE 3 1-D ¹H-{¹²⁵Te} HMQC spectrum of 1,4-thiatellurin, 6b

NMR spectrum of this compound H(2,6) appears as a doublet with a chemical shift of 7.37 ppm. This absorption is suppressed in the indirect spectrum shown because it is due to ¹Hs not coupled to ¹²⁵Te. It is further suppressed by nulling the signal using the BIRD pulse sequence and then averaging away any residual signal by alternating the phase of the receiver. The doublets centered at 7.28 and 7.47 ppm correspond to the satellites in an ordinary ¹H NMR spectrum and are due to the absorption of H(2,6) in molecules containing ¹²⁵Te in which ¹H and ¹²⁵Te are coupled to each other. The experimental enhancement due to inverse detection of ¹²⁵Te was determined in the same way as that for ⁷⁷Se using Me₃TeCl. The experimentally observed enhancement was approximately 46 which is close to the theoretical enhancement value of 50.7. To demonstrate that this method is also applicable to the Te-123 nucleus, compound 6b was studied. A satisfactory one-dimensional ¹H-{¹²³Te} HMQC spectrum was obtained.

In conclusion, the biological selenium donor compound SePX was shown to be SePO₃H_{3-n}-; hydrolysis of SePO₃H_{3-n}- is dissociative involving a monomeric metaphosphate-like transition state; inverse detection of ⁷⁷Se and ¹²⁵Te using HMQC spectroscopy is advantageous.

Acknowledgments

The author thanks his collaborators and coworkers: Professors E. Block, M. Brown, J. Michalski, A. Skowrońska, Dr. T.C. Stadtman, J.N. Davis, Dr. F. Farooqui, Dr. C. Job, W. Jung, Dr. R. Kamiński, Dr. M. Sabahi, Dr. T.D. Scholz, T.B. Schroeder, Dr. W.P. Singh, Dr. Z. Veres, N. You, and the National Science Foundation and American Heart Association for financial support of this work.

References

- [1.] A. Ehrenreich, K. Forchhammer, P. Tormay, B. Veprek, and A. Böck, Eur. J. Biochem., 206, 767 (1992).
- [2.] I.Y. Kim, Z. Veres, and T.C. Stadtman, J. Biol. Chem., 267, 19650 (1992).
- [3.] Z. Veres, L. Tsai, T.D. Scholz, M. Politino, R.S. Balaban, and T.C. Stadtman, *Proc. Natl. Acad. Sci. U.S.A.*, **89**, 2975 (1992).
- [4.] R.S. Glass, W.P. Singh, W. Jung, Z. Veres, T.D. Scholz, and T.C. Stadtman, *Biochemistry*, 32, 12555 (1993).
- [5.] T.C. Stadtman, Adv. Inorg. Biochem., 10, 157 (1994).
- [6.] T.C. Stadtman, Annu. Rev. Biochem., 65, 83 (1996).
- [7.] W. Leinfelder, K. Forchhammer, B. Veprek, E. Zehelein and A. Böck, *Proc. Natl. Acad. Sci. U.S.A.*, 87, 543 (1990).
- [8.] K. Forchhammer and A. Böck, J. Biol. Chem., 266, 6324 (1991).
- [9.] A.J. Kirby and A.G. Varvoglis, J. Am. Chem. Soc., 89, 415 (1967).
- [10.] S.J. Benkovic and K.J. Schray, in *Transition States of Biochemical Processes*, edited by R.D. Gandour and R.L. Schowen (Plenum Press, New York, 1978) p. 493.
- [11.] F.H. Westheimer, Chem. Rev., 81, 313 (1981).
- [12.] G.R.J. Thatcher and R. Kluger, Adv. Phys. Org. Chem., 25, 99 (1989).
- [13.] W.P. Jencks, in *Phosphorus Chemistry*, edited by E.N. Walsh, E.J. Griffith, R.W. Parry, and L.D. Quin (American Chemical Society, Washington, D.C., 1992) ACS Symp. Ser. 486, p. 102.
- [14.] W.P. Jencks, Chem. Soc. Rev., 10, 345 (1981).

- [15.] D. Herschlag and W.P. Jencks, J. Am. Chem. Soc., 111, 7579 (1989).
- [16.] E.S. Lightcap and P.A. Frey, J. Am. Chem. Soc., 114, 9750 (1992).
- [17.] C.J. Halkides and P.A. Frey, J. Am. Chem. Soc., 113, 9843 (1991).
- [18.] R. Kamiński, R.S. Glass, T.B. Schroeder, J. Michalski and A. Skowrońska, *Bioorg. Chem.*, 25, 247 (1997).
- [19.] N.P. Luthra and J.D. Odom, in *The Chemistry of Organic Selenium and Tellurium Compounds*, edited by S. Patai and Z. Rappoport (Wiley, Chichester, 1986), Vol. 1, p. 189.
- [20.] H.C.E. McFarlane and W. McFarlane, in *Multinuclear NMR* (Plenum Press, New York, 1987).
- [21.] H. Duddeck, Prog. Nucl. Magn. Reson. Spectrosc., 27, 1 (1995).
- [22.] P. Gettins and B.C. Crews, J. Biol. Chem., 266, 4804 (1991).
- [23.] T.B. Schroeder, C. Job, M.F. Brown, and R.S. Glass, Magn. Reson. Chem., 33, 191 (1995).
- [24.] S. Berger, T. Facke, and R. Wagner, *Magn. Reson. Chem.*, 34, 4 (1996).
- [25.] R.R. Ernst, G. Bodenhausen and A. Wokaun, in *Principles of Nuclear Magnetic Resonance in One and Two Dimensions* (Clarendon Press, Oxford, 1987).
- [26.] T.B. Schroeder, C. Job, M.F. Brown, R.S. Glass, N. You, and E. Block, Magn. Reson. Chem., 35, 752 (1997).
- [27.] R.K. Bhardwaj and R.S. Davidson, *Tetrahedron*, **43**, 4473 (1987).
- [28.] B. Borecka, J. Chojnowski, M. Cypryk, J. Michalski, and J. Zielinska, J. Organomet. Chem., 171, 17 (1979).
- [29.] T.C. Stadtman and R.S. Glass, in Methods in Enzymology: Biothiols, Part B, edited by L. Packer, J.N. Abelson, and M.I. Simon (Academic, San Diego, 1995), Vol. 252, p. 309.
- [30.] R.A.Y. Jones and A.R. Katritzky, *J. Inorg. Nucl. Chem.*, **15**, 193 (1960).
- [31.] M.M. Crutchfield, C.F. Callis, R.R. Irani, and G.C. Groth, *Inorg. Chem.*, 1, 813 (1962).
- [32.] M. Cohn and T.R. Hughes, Jr., J. Biol. Chem., 235, 3250 (1960).
- [33.] E.K. Jaffe and M. Cohn, Biochemistry, 17, 652 (1978).
- [34.] A.-M. Chauvet-Monges, M. Hadida, and A. Crevat, C.R. Hebd.

- Seances Acad. Sci., Ser. C, 286, 489 (1978).
- [35.] R. Phillips, Chem. Rev., 66, 501 (1966).
- [36.] W.P. Jencks and J. Regenstein, in *Handbook of Biochemistry and Molecular Biology*, edited by G.D. Fasman (CRC Press, Cleveland, 1976), 3rd Ed., Vol. 1, p. 305.
- [37.] D.C. Dittmer and O.B. Ramsay, J. Org. Chem., 28, 1268 (1963).
- [38.] C.J. Peacock and G. Nickless, Z. Naturforsch. A., 24, 245 (1969).
- [39.] J.A. Gerlt, P.C. Demou and S. Mehdi, J. Am. Chem. Soc., 104, 2848 (1982).
- [40.] N. Bourne and A. Williams, J. Am. Chem. Soc., 106, 7591 (1984).
- [41.] N.E. Good, G.D. Winget, W. Winter, T.N. Conolly, S. Izawa, and R.M.M. Singh, *Biochemistry*, 5, 467 (1966).
- [42.] T. Hashizume and Y. Sasaki, Anal. Biochem., 15, 199 (1966).
- [43.] T. Hashizume and Y. Sasaki, Anal. Biochem., 15, 346 (1966).
- [44.] R.D. Guthrie and W.P. Jencks, Acc. Chem. Res., 22, 343 (1989).
- [45.] A. Bax, S.W. Sparks, and D.A. Torchia, *Methods Enzymol.*, 176, 134 (1989).
- [46.] G. Martin and R. Crouch, J. Nat. Prod., 54, 149 (1991).
- [47.] F: Farooqui, M. Sabahi, T.B. Schroeder, and R.S. Glass, *Scientia Iranica*, 4, in press (1997).
- [48.] J.E. Cone, R. Martín del Río, J.N. Davis, and T.C. Stadtman, *Proc. Natl. Acad. Sci. U.S.A.*, 73, 2659 (1976).